Scorpion SII-2205-1585 Motor Propeller Data

Motor Wind 34-Turn Delta		Motor Kv 1585 RPM/Volt		No-Load Current lo = 0.47 Amps @ 10v		Motor Resistance Rm = 0.182 Ohms		$\begin{array}{\|c\|} \hline 1 \text { Max } \\ 10 \mathrm{Amps} \\ \hline \end{array}$	$\begin{gathered} \hline \text { P Max (3S) } \\ 110 \mathrm{~W} \\ \hline \end{gathered}$
Outside Diameter $27.9 \mathrm{~mm}, 1.098 \mathrm{in}$.		Body Length$23.0 \mathrm{~mm}, 0.906 \mathrm{in}$.		Total Shaft Length $42.0 \mathrm{~mm}, 1.654 \mathrm{in}$.		Shaft Diameter$2.98 \mathrm{~mm}, 0.117 \mathrm{in}$.		$\begin{gathered} \text { Motor Weight } \\ 35.4 \mathrm{gm}, \quad 1.25 \mathrm{oz} \\ \hline \end{gathered}$	
Prop Manf.	$\begin{aligned} & \hline \text { Prop } \\ & \text { Size } \\ & \hline \end{aligned}$	Input Voltage	Motor Amps	Watts Input	$\begin{aligned} & \hline \text { Prop } \\ & \text { RPM } \\ & \hline \end{aligned}$	Pitch Speed	Thrust Grams	Thrust Ounces	Thrust Eff. Grams/W
APC	5.5x4.5-E	7.4	4.32	32.0	10,256	43.7	159	5.61	4.97
APC	6×4-E	7.4	4.73	35.0	9,995	37.9	200.4	7.07	5.73
APC	6x5.5-E	7.4	6.03	44.7	9,190	47.9	186.4	6.57	4.17
APC	7×4-E	7.4	6.53	48.3	8,879	33.6	307.6	10.85	6.37
APC	7x4-SF	7.4	6.41	47.4	8,915	33.8	293.2	10.34	6.18
APC	7x5-E	7.4	7.72	57.1	8,142	38.6	294.7	10.40	5.16
APC	7x5-SF	7.4	7.48	55.4	8,244	39.0	301.3	10.63	5.44
APC	7x6-E	7.4	8.05	59.6	7,934	45.1	309.6	10.92	5.19
APC	7x6-SF	7.4	8.39	62.1	7,677	43.6	278.6	9.83	4.49
APC	8x3.8-SF	7.4	8.79	65.0	7,395	26.6	381.2	13.45	5.86
APC	8×4-E	7.4	8.31	61.5	7,765	29.4	367.9	12.98	5.98
APC	8x6-E	7.4	10.11	74.8	6,557	37.3	332.7	11.74	4.45
APC	8x6-SF	7.4	11.09	82.0	5,908	33.6	342.6	12.08	4.18
APC	9x3.8-SF	7.4	10.26	75.9	6,493	23.4	424	14.96	5.58
GEM	8x4.5-C	7.4	9.93	73.5	6,623	28.2	385.9	13.61	5.25
GEM	9x4.7-C	7.4	10.36	76.7	6,320	28.1	419	14.78	5.47
GWS	$6 \times 3 \times 3$-DD	7.4	3.89	28.8	10,551	30.0	202.7	7.15	7.03
GWS	7x3.5-DD	7.4	4.54	33.6	10,108	33.5	248.6	8.77	7.39
GWS	7x3.5x3-DD	7.4	5.39	39.9	9,564	31.7	268.4	9.47	6.73
GWS	8x4-DD	7.4	7.19	53.2	8,426	31.9	362.3	12.78	6.81
GWS	$8 \times 4 \times 3$-DD	7.4	8.11	60.0	7,823	29.6	369.9	13.05	6.17
GWS	8x4.5-SF	7.4	9.93	73.5	6,623	28.2	385.9	13.61	5.25
GWS	$8 \times 6-\mathrm{HD}$	7.4	9.63	71.3	6,869	39.0	338.1	11.93	4.74
GWS	8x6-SF	7.4	10.14	75.0	6,496	36.9	368.5	13.00	4.91
GWS	9x4.7-SF	7.4	10.36	76.7	6,320	28.1	419	14.78	5.47
GWS	9x5-DD	7.4	9.81	72.6	6,763	32.0	428.8	15.13	5.91
GWS	$9 \times 5 \times 3$-DD	7.4	10.87	80.4	6,001	28.4	414.2	14.61	5.15
MAS	$7 \times 4 \times 3$	7.4	7.50	55.5	8,275	31.3	245.4	8.66	4.42
MAS	$8 \times 6 \times 3$	7.4	10.67	79.0	6,241	35.5	302.4	10.67	3.83
Prop Manf.	$\begin{aligned} & \hline \text { Prop } \\ & \text { Size } \end{aligned}$	Input Voltage	Motor Amps	Watts Input	$\begin{aligned} & \hline \text { Prop } \\ & \text { RPM } \end{aligned}$	Pitch Speed	Thrust Grams	Thrust Ounces	Thrust Eff. Grams/W
APC	4.5x4.1-E	11.1	4.58	50.9	15,760	61.2	199.4	7.03	3.92
APC	4.7x4.25-E	11.1	5.39	59.8	15,147	61.0	207.5	7.32	3.47
APC	$4.75 \times 4.75-\mathrm{E}$	11.1	5.79	64.3	14,855	66.8	200.5	7.07	3.12
APC	$4.75 \times 5.5-\mathrm{E}$	11.1	6.53	72.5	14,332	74.6	183.5	6.47	2.53
APC	5x5-E	11.1	6.56	72.8	14,302	67.7	203	7.16	2.79
APC	5.25x4.75-E	11.1	7.04	78.1	13,916	62.6	280.5	9.89	3.59
APC	5.5x4.5-E	11.1	7.27	80.6	13,735	58.5	288.6	10.18	3.58
APC	6×4-E	11.1	7.83	86.9	13,344	50.5	372.6	13.14	4.29
APC	6x5.5-E	11.1	9.56	106.1	12,176	63.4	329.3	11.62	3.10
APC	7×4-E	11.1	10.64	118.1	11,390	43.1	526.1	18.56	4.45
APC	7x4-SF	11.1	10.70	118.8	11,348	43.0	512	18.06	4.31
GWS	$5 \times 3 \times 3$-DD	11.1	4.88	54.1	15,537	44.1	273.5	9.65	5.05
GWS	5x4.3-DD	11.1	5.02	55.7	15,424	62.8	289	10.19	5.19
GWS	6x3-DD	11.1	5.83	64.7	14,809	42.1	366.5	12.93	5.66
GWS	$6 \times 3 \times 3$-DD	11.1	6.51	72.2	14,330	40.7	384.3	13.56	5.32
GWS	7x3.5-DD	11.1	7.63	84.7	13,487	44.7	473.8	16.71	5.59
GWS	7x3.5x3-DD	11.1	8.98	99.7	12,550	41.6	497.6	17.55	4.99
GWS	8x4-DD	11.1	11.53	128.0	10,654	40.4	601.9	21.23	4.70
MAS	7x4x3	11.1	11.52	127.9	10,657	40.4	449.7	15.86	3.52

Propeller Chart Color Code Explanation

PLEASE NOTE:

The data contained in this prop chart is based on actual measurements taken in a controlled test environment. The test voltages used are based on a properly sized Li-Po battery for the current draw of the motor being tested. If you are using a larger than normal capacity battery, or a very high C-Rated battery, your actual voltages will be higher than those shown in this chart, and this will result in higer current draw for each prop used. You should always test your power system with a watt meter whenever a prop is used to ensure that you are not exceeding the recommended rating of the motor being used. The prop recommendations in this chart are based on the motor receiving adequate cooling throughout its operation. If your motor is being used inside a cowl, you must provide adequate cooling to the motor and make sure that the motor is not getting too hot during operation.

